/********************************** (C) COPYRIGHT ******************************* * File Name : core_riscv.h * Author : WCH * Version : V1.1.0 * Date : 2023/04/10 * Description : CH592 RISC-V Core Peripheral Access Layer Header File ********************************************************************************* * Copyright (c) 2021 Nanjing Qinheng Microelectronics Co., Ltd. * Attention: This software (modified or not) and binary are used for * microcontroller manufactured by Nanjing Qinheng Microelectronics. *******************************************************************************/ #ifndef __CORE_RV3A_H__ #define __CORE_RV3A_H__ #ifdef __cplusplus extern "C" { #endif /* IO definitions */ #ifdef __cplusplus #define __I volatile /*!< defines 'read only' permissions */ #else #define __I volatile const /*!< defines 'read only' permissions */ #endif #define __O volatile /*!< defines 'write only' permissions */ #define __IO volatile /*!< defines 'read / write' permissions */ #define RV_STATIC_INLINE static inline //typedef enum {SUCCESS = 0, ERROR = !SUCCESS} ErrorStatus; typedef enum { DISABLE = 0, ENABLE = !DISABLE } FunctionalState; typedef enum { RESET = 0, SET = !RESET } FlagStatus, ITStatus; /* memory mapped structure for Program Fast Interrupt Controller (PFIC) */ typedef struct { __I uint32_t ISR[8]; // 0 __I uint32_t IPR[8]; // 20H __IO uint32_t ITHRESDR; // 40H uint8_t RESERVED[4]; // 44H __O uint32_t CFGR; // 48H __I uint32_t GISR; // 4CH __IO uint8_t VTFIDR[4]; // 50H uint8_t RESERVED0[0x0C]; // 54H __IO uint32_t VTFADDR[4]; // 60H uint8_t RESERVED1[0x90]; // 70H __O uint32_t IENR[8]; // 100H uint8_t RESERVED2[0x60]; // 120H __O uint32_t IRER[8]; // 180H uint8_t RESERVED3[0x60]; // 1A0H __O uint32_t IPSR[8]; // 200H uint8_t RESERVED4[0x60]; // 220H __O uint32_t IPRR[8]; // 280H uint8_t RESERVED5[0x60]; // 2A0H __IO uint32_t IACTR[8]; // 300H uint8_t RESERVED6[0xE0]; // 320H __IO uint8_t IPRIOR[256]; // 400H uint8_t RESERVED7[0x810]; // 500H __IO uint32_t SCTLR; // D10H } PFIC_Type; /* memory mapped structure for SysTick */ typedef struct { __IO uint32_t CTLR; __IO uint32_t SR; __IO uint64_t CNT; __IO uint64_t CMP; } SysTick_Type; #define PFIC ((PFIC_Type *)0xE000E000) #define SysTick ((SysTick_Type *)0xE000F000) #define PFIC_KEY1 ((uint32_t)0xFA050000) #define PFIC_KEY2 ((uint32_t)0xBCAF0000) #define PFIC_KEY3 ((uint32_t)0xBEEF0000) /* ########################## define #################################### */ #define __nop() __asm__ volatile("nop") #define read_csr(reg) ({unsigned long __tmp; \ __asm__ volatile ("csrr %0, " #reg : "=r"(__tmp)); \ __tmp; }) #define write_csr(reg, val) ({ \ if (__builtin_constant_p(val) && (unsigned long)(val) < 32) \ __asm__ volatile ("csrw " #reg ", %0" :: "i"(val)); \ else \ __asm__ volatile ("csrw " #reg ", %0" :: "r"(val)); }) #define PFIC_EnableAllIRQ() {write_csr(0x800, 0x88);__nop();__nop();} #define PFIC_DisableAllIRQ() {write_csr(0x800, 0x80);__nop();__nop();} /* ########################## PFIC functions #################################### */ /********************************************************************* * @fn __risc_v_enable_irq * * @brief recover Global Interrupt * * @return mpie and mie bit in mstatus. */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t __risc_v_enable_irq(uint32_t mpie_mie) { uint32_t result; __asm volatile ("csrrs %0, 0x800, %1" : \ "=r"(result): "r"(mpie_mie) : "memory"); return result; } /********************************************************************* * @fn __disable_irq * * @brief Disable Global Interrupt * * @return mpie and mie bit in mstatus. */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t __risc_v_disable_irq(void) { uint32_t result; __asm volatile ("csrrc %0, 0x800, %1" : \ "=r"(result): "r"(0x88) : "memory"); return result & 0x88; } /******************************************************************************* * @fn PFIC_EnableIRQ * * @brief Enable Interrupt * * @param IRQn - Interrupt Numbers */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_EnableIRQ(IRQn_Type IRQn) { PFIC->IENR[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn)&0x1F)); } /******************************************************************************* * @fn PFIC_DisableIRQ * * @brief Disable Interrupt * * @param IRQn - Interrupt Numbers */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_DisableIRQ(IRQn_Type IRQn) { PFIC->IRER[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn)&0x1F)); __nop(); __nop(); } /******************************************************************************* * @fn PFIC_GetStatusIRQ * * @brief Get Interrupt Enable State * * @param IRQn - Interrupt Numbers * * @return 1: Interrupt Enable * 0: Interrupt Disable */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t PFIC_GetStatusIRQ(IRQn_Type IRQn) { return ((uint32_t)((PFIC->ISR[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn)&0x1F))) ? 1 : 0)); } /******************************************************************************* * @fn PFIC_GetPendingIRQ * * @brief Get Interrupt Pending State * * @param IRQn - Interrupt Numbers * * @return 1: Interrupt Pending Enable * 0: Interrupt Pending Disable */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t PFIC_GetPendingIRQ(IRQn_Type IRQn) { return ((uint32_t)((PFIC->IPR[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn)&0x1F))) ? 1 : 0)); } /******************************************************************************* * @fn PFIC_SetPendingIRQ * * @brief Set Interrupt Pending * * @param IRQn - Interrupt Numbers */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_SetPendingIRQ(IRQn_Type IRQn) { PFIC->IPSR[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn)&0x1F)); } /******************************************************************************* * @fn PFIC_ClearPendingIRQ * * @brief Clear Interrupt Pending * * @param IRQn - Interrupt Numbers */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_ClearPendingIRQ(IRQn_Type IRQn) { PFIC->IPRR[((uint32_t)(IRQn) >> 5)] = (1 << ((uint32_t)(IRQn)&0x1F)); } /******************************************************************************* * @fn PFIC_GetActive * * @brief Get Interrupt Active State * * @param IRQn - Interrupt Numbers * * @return 1: Interrupt Active * 0: Interrupt No Active. */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t PFIC_GetActive(IRQn_Type IRQn) { return ((uint32_t)((PFIC->IACTR[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn)&0x1F))) ? 1 : 0)); } /******************************************************************************* * @fn PFIC_SetPriority * * @brief Set Interrupt Priority * * @param IRQn - Interrupt Numbers * @param priority - bit7: pre-emption priority * bit6-bit4: subpriority */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_SetPriority(IRQn_Type IRQn, uint8_t priority) { PFIC->IPRIOR[(uint32_t)(IRQn)] = priority; } /********************************************************************* * @fn SetVTFIRQ * * @brief Set VTF Interrupt * * @param addr - VTF interrupt service function base address. * IRQn - Interrupt Numbers * num - VTF Interrupt Numbers * NewState - DISABLE or ENABLE * * @return none */ __attribute__((always_inline)) RV_STATIC_INLINE void SetVTFIRQ(uint32_t addr, IRQn_Type IRQn, uint8_t num, FunctionalState NewState){ if(num > 3) return ; if (NewState != DISABLE) { PFIC->VTFIDR[num] = IRQn; PFIC->VTFADDR[num] = ((addr&0xFFFFFFFE)|0x1); } else{ PFIC->VTFIDR[num] = IRQn; PFIC->VTFADDR[num] = ((addr&0xFFFFFFFE)&(~0x1)); } } /********************************************************************* * @fn _SEV * * @brief Set Event * * @return none */ __attribute__( ( always_inline ) ) RV_STATIC_INLINE void _SEV(void) { PFIC->SCTLR |= (1<<3)|(1<<5); } /********************************************************************* * @fn _WFE * * @brief Wait for Events * * @return none */ __attribute__( ( always_inline ) ) RV_STATIC_INLINE void _WFE(void) { PFIC->SCTLR |= (1<<3); asm volatile ("wfi"); } /********************************************************************* * @fn __WFE * * @brief Wait for Events * * @return None */ __attribute__( ( always_inline ) ) RV_STATIC_INLINE void __WFE(void) { _SEV(); _WFE(); _WFE(); } /********************************************************************* * @fn __WFI * * @brief Wait for Interrupt */ __attribute__((always_inline)) RV_STATIC_INLINE void __WFI(void) { PFIC->SCTLR &= ~(1 << 3); // wfi __asm__ volatile("wfi"); } /********************************************************************* * @fn PFIC_SystemReset * * @brief Initiate a system reset request */ __attribute__((always_inline)) RV_STATIC_INLINE void PFIC_SystemReset(void) { PFIC->CFGR = PFIC_KEY3 | (1 << 7); } /********************************************************************* * @fn __AMOADD_W * * @brief Atomic Add with 32bit value * Atomically ADD 32bit value with value in memory using amoadd.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be ADDed * * * @return return memory value + add value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOADD_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amoadd.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOAND_W * * @brief Atomic And with 32bit value * Atomically AND 32bit value with value in memory using amoand.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be ANDed * * * @return return memory value & and value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOAND_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amoand.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOMAX_W * * @brief Atomic signed MAX with 32bit value * @details Atomically signed max compare 32bit value with value in memory using amomax.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be compared * * * @return the bigger value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOMAX_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amomax.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOMAXU_W * * @brief Atomic unsigned MAX with 32bit value * Atomically unsigned max compare 32bit value with value in memory using amomaxu.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be compared * * @return return the bigger value */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t __AMOMAXU_W(volatile uint32_t *addr, uint32_t value) { uint32_t result; __asm volatile ("amomaxu.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOMIN_W * * @brief Atomic signed MIN with 32bit value * Atomically signed min compare 32bit value with value in memory using amomin.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be compared * * * @return the smaller value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOMIN_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amomin.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOMINU_W * * @brief Atomic unsigned MIN with 32bit value * Atomically unsigned min compare 32bit value with value in memory using amominu.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be compared * * * @return the smaller value */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t __AMOMINU_W(volatile uint32_t *addr, uint32_t value) { uint32_t result; __asm volatile ("amominu.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOOR_W * * @brief Atomic OR with 32bit value * @details Atomically OR 32bit value with value in memory using amoor.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be ORed * * * @return return memory value | and value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOOR_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amoor.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /********************************************************************* * @fn __AMOSWAP_W * * @brief Atomically swap new 32bit value into memory using amoswap.d. * addr Address pointer to data, address need to be 4byte aligned * newval New value to be stored into the address * * @return return the original value in memory */ __attribute__((always_inline)) RV_STATIC_INLINE uint32_t __AMOSWAP_W(volatile uint32_t *addr, uint32_t newval) { uint32_t result; __asm volatile ("amoswap.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(newval) : "memory"); return result; } /********************************************************************* * @fn __AMOXOR_W * * @brief Atomic XOR with 32bit value * @details Atomically XOR 32bit value with value in memory using amoxor.d. * addr Address pointer to data, address need to be 4byte aligned * value value to be XORed * * * @return return memory value ^ and value */ __attribute__((always_inline)) RV_STATIC_INLINE int32_t __AMOXOR_W(volatile int32_t *addr, int32_t value) { int32_t result; __asm volatile ("amoxor.w %0, %2, %1" : \ "=r"(result), "+A"(*addr) : "r"(value) : "memory"); return *addr; } /** * @brief Return the Machine Status Register * * @return mstatus value */ uint32_t __get_MSTATUS(void); /** * @brief Return the Machine ISA Register * * @return misa value */ uint32_t __get_MISA(void); /*** * @brief Return the Machine Trap-Vector Base-Address Register * * @return mtvec value */ uint32_t __get_MTVEC(void); /** * @brief Return the Machine Seratch Register * * @return mscratch value */ uint32_t __get_MSCRATCH(void); /** * @brief Return the Machine Exception Program Register * * @return mepc value */ uint32_t __get_MEPC(void); /** * @brief Return the Machine Cause Register * * @return mcause value */ uint32_t __get_MCAUSE(void); /** * @brief Return the Machine Trap Value Register * * @return mtval value */ uint32_t __get_MTVAL(void); /** * @brief Return Vendor ID Register * * @return mvendorid value */ uint32_t __get_MVENDORID(void); /** * @brief Return Machine Architecture ID Register * * @return marchid value */ uint32_t __get_MARCHID(void); /** * @brief Return Machine Implementation ID Register * * @return mimpid value */ uint32_t __get_MIMPID(void); /** * @brief Return Hart ID Register * * @return mhartid value */ uint32_t __get_MHARTID(void); /** * @brief Return SP Register * * @return SP value */ uint32_t __get_SP(void); #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFFFFFFFFFFF) #define SysTick_CTLR_SWIE (1 << 31) #define SysTick_CTLR_INIT (1 << 5) #define SysTick_CTLR_MODE (1 << 4) #define SysTick_CTLR_STRE (1 << 3) #define SysTick_CTLR_STCLK (1 << 2) #define SysTick_CTLR_STIE (1 << 1) #define SysTick_CTLR_STE (1 << 0) #define SysTick_SR_CNTIF (1 << 0) RV_STATIC_INLINE uint32_t SysTick_Config(uint64_t ticks) { if((ticks - 1) > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */ SysTick->CMP = ticks - 1; /* set reload register */ PFIC_EnableIRQ(SysTick_IRQn); SysTick->CTLR = SysTick_CTLR_INIT | SysTick_CTLR_STRE | SysTick_CTLR_STCLK | SysTick_CTLR_STIE | SysTick_CTLR_STE; /* Enable SysTick IRQ and SysTick Timer */ return (0); /* Function successful */ } #ifdef __cplusplus } #endif #endif /* __CORE_RV3A_H__ */